Grade 3 Mathematics Big Ideas

Big Ideas -Priority 1	Supporting Ideas - Priority 2		
[C] Communication	[PS] Problem Solving		
[CN] Connections	[R] Reasoning		
[ME] Mental Mathematics	[T] Technology and Estimation	$[$ [$]$ Visualization	

Number Facts

[C] Communication
[ME] Mental Mathematics
[T] Technology and Estimation
[V] Visualization

Strand: Number General Outcome: Develop number sense.	
Specific Outcomes It is expected that students will:	Achievement Indicators The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
1. Say the number sequence 0 to 1000 forward and backward by: - $5 \mathrm{~s}, 10 \mathrm{~s}$ or 100 s , using any starting point - 3 s , using starting points that are multiples of 3 - 4 s , using starting points that are multiples of 4 - 25 s , using starting points that are multiples of 25 . [C, CN, ME]	Extend a given skip counting sequence by $5 \mathrm{~s}, 10$ s or 100 s , forward and backward, using a given starting point. Extend a given skip counting sequence by 3 s , forward and backward, starting at a given multiple of 3 . Extend a given skip counting sequence by 4 s , forward and backward, starting at a given multiple of 4. Extend a given skip counting sequence by 25 s , forward and backward, starting at a given multiple of 25 . Identify and correct errors and omissions in a given skip counting sequence. Determine the value of a given set of coins (nickels, dimes, quarters, loonies) by using skip counting. Identify and explain the skip counting pattern for a given number sequence.

2. Represent and describe numbers to 1000 , concretely, pictorially and symbolically. $[\mathrm{C}, \mathrm{CN}, \mathrm{~V}]$	Read a given three-digit numeral without using the word and; e.g., 321 is three hundred twenty-one, NOT three hundred AND twenty-one. Read a given number word (0 to 1000). Represent a given number as an expression; e.g., $300-44$ or $20+236$ for 256 . Represent a given number, using manipulatives such as base ten materials. Represent a given number pictorially. Write number words for given multiples of ten to 90 . Write number words for given multiples of a hundred to 900 .
3. Compare and order numbers to 1000 . [C, CN, R, V]	Place a given set of numbers in ascending or descending order, and verify the result by using a hundred chart (e.g., a one hundred chart, a two hundred chart, a three hundred chart), a number line or by making references to place value. Create as many different 3-digit numerals as possible, given three different digits. Place the numbers in ascending or descending order. Identify and explain errors in a given ordered sequence. Identify missing numbers in parts of a given hundred chart. Identify errors in a given hundred chart.
4. Estimate quantities less than 1000 , using referents. [ME, PS, R, V]	Estimate the number of groups of ten in a given quantity, using 10 as a referent (known quantity). Estimate the number of groups of a hundred in a given quantity, using 100 as a referent. Estimate a given quantity by comparing it to a referent. Select an estimate for a given quantity by choosing among three possible choices. Select and justify a referent for determining an estimate for a given quantity.

5. Illustrate, concretely and pictorially, the meaning of place value for numerals to 1000 .
[C, CN, R, V]
$>$ Record, in more than one way, the number represented by given proportional materials (e.g., base- ten materials) and non-proportional materials (e.g., money).
> Represent a given number in different ways, using proportional and non-proportional materials, and explain how the representations are equivalent; e.g., 351 can be represented as three 100 s, five

10 s and one 1 ; or two 100 s, fifteen 10 s and one 1 ; or three 100 s, four 10 s and eleven 1 s .
$>$ Explain and show, with counters, the meaning of each digit for a given 3-digit numeral with all digits the same; e.g., for the numeral 222, the first digit represents two hundreds (two hundred counters) the second digit represents two tens (twenty counters) and the third digit represents two ones (two counters).
$>$ Explain, using concrete materials, the meaning of zero as a place holder in a given number.
6. Describe and apply mental mathematics strategies
for adding two 2-digit numerals, such as:

- adding from left to right
- taking one addend to the nearest multiple of ten and then compensating
- using doubles.
[C, CN, ME, PS, R, V]
(Students investigate a variety of strategies and become proficient in at least one appropriate and efficient strategy that they understand.)
> Add two given 2-digit numerals, using a mental mathematics strategy, and explain or illustrate the strategy.
> Explain how to use the "adding from left to right" strategy; e.g., to determine the sum of $23+46$, think $20+40$ and $3+6$.
> Explain how to use the "taking one addend to the nearest multiple of ten and then compensating" strategy; e.g., to determine the sum of $28+47$, think $30+47-2$ or $50+28-$ 3.
> Explain how to use the "using doubles" strategy; e.g., to determine the sum of $24+26$, think $25+25$; to determine the sum of $25+26$, think $25+25+1$ or doubles plus 1 .
> Apply a mental mathematics strategy for adding two given 2-digit numerals.

7. Describe and apply mental mathematics strategies for subtracting two 2 -digit numerals, such as:

- taking the subtrahend to the nearest multiple of ten and then compensating
- thinking of addition
- using doubles.
[C, CN, ME, PS, R, V]
(Students investigate a variety of strategies and become proficient in at least one appropriate and efficient strategy that they understand.)
> Subtract two given 2-digit numerals, using a mental mathematics strategy, and explain or model the strategy used.
> Explain how to use the "taking the subtrahend to the nearest multiple of ten and then compensating" strategy; e.g., to determine the difference of $48-19$, think $48-20+$ 1.
$>$ Explain how to use the "adding on" strategy; e.g., to determine the difference of $62-45$, think $45+5$, then $50+12$ and then $5+12$.
> Explain how to use the "using doubles" strategy; e.g., to determine the difference of 24 12 , think $12+12=24$.
$>$ Apply a mental mathematics strategy for subtracting two given 2-digit numerals.
$>$ Estimate the solution for a given problem involving the sum of two 2-digit numerals; e.g., to estimate the sum of $43+56$, use $40+50$ (the sum is close to 90).
$>$ Estimate the solution for a given problem involving the difference of two 2-digit numerals; e.g., to estimate the difference of $56-23$, use $50-20$ (the difference is close to 30).
(Students investigate a variety of strategies and become proficient in at least one appropriate and efficient strategy that they understand.)
> Model the addition of two or more given numbers, using concrete or visual representations, and record the process symbolically.
> Model the subtraction of two given numbers, using concrete or visual representations, and record the process symbolically.
$>$ Create an addition or subtraction story problem for a given solution.
> Determine the sum of two given numbers, using a personal strategy; e.g., for $326+48$, record $300+60+14$.
> Determine the difference of two given numbers, using a personal strategy; e.g., for $127-38$, record $38+2+80+7$ or $127-20-10-8$.
> Refine personal strategies to increase their efficiency.
> Solve a given problem involving the sum or difference of two given numbers.

10. Apply mental mathematics strategies and number properties, such as: - using doubles - making 10 - using the commutative property - using the property of zero - thinking addition for subtraction in order to understand and recall basic addition facts and related subtraction facts to 18 . [C, CN, ME, PS, R, V] Understand, recall and apply addition and related subtraction facts to 18 .	Describe a mental mathematics strategy that could be used to determine a given basic fact, such as: - doubles; e.g., for $6+8$, think $7+7$ - doubles plus one; e.g., for $6+7$, think $6+6+1$ - doubles take away one; e.g., for $6+7$, think $7+7-1$ - doubles plus two; e.g., for $6+8$, think $6+6+2$ - doubles take away two; e.g., for $6+8$, think $8+8-2$ - making 10 ; e.g., for $6+8$, think $6+4+4$ or $8+2+4$ - commutative property; e.g., for $3+9$, think $9+3$ - addition for subtraction; e.g., for $13-7$, think $7+?=13$. Provide a rule for determining answers when adding and subtracting zero. Apply a mental mathematics strategy to provide a solution to a given basic addition or subtraction fact to 18 . Demonstrate understanding, recall/memorization and application of addition and related subtraction facts to 18 .
11. Demonstrate an understanding of multiplication to 5×5 by: - representing and explaining multiplication using equal grouping and arrays - creating and solving problems in context that involve multiplication - modelling multiplication using concrete and visual representations, and recording the process symbolically - relating multiplication to repeated addition - relating multiplication to division. [C, CN, PS, R] Understand and recall multiplication facts to 5×5.	Identify events from experience that can be described as multiplication. Represent a given story problem, using manipulatives or diagrams, and record the problem in a number sentence. Represent a given multiplication expression as repeated addition. Represent a given repeated addition as multiplication. Create and illustrate a story problem for a given number sentence; e.g., $2 \times 3=6$. Represent, concretely or pictorially, equal groups for a given number sentence. Represent a given multiplication expression, using an array. Create an array to model the commutative property of multiplication. Relate multiplication to division by using arrays and writing related number sentences. Solve a given multiplication problem. Demonstrate understanding and recall/memorization of multiplication facts to 5×5.

12. Demonstrate an understanding of division (limited to division related to multiplication facts up to 5×5) by:

- representing and explaining division using equal sharing and equal grouping
- creating and solving problems in context that involve equal sharing and equal grouping
- modelling equal sharing and equal grouping using concrete and visual representations, and recording the process symbolically
- relating division to repeated subtraction
- relating division to multiplication.
[C, CN, PS, R]
Understand and recall division facts related to multiplication facts to 5×5.
$>$ Identify events from experience that can be described as equal sharing.
$>$ Identify events from experience that can be described as equal grouping.
$>$ Illustrate, with counters or a diagram, a given story problem, presented orally, that involves equal sharing; and solve the problem.
> Illustrate, with counters or a diagram, a given story problem, presented orally, that involves equal grouping; and solve the problem.
> Listen to a story problem; represent the numbers, using manipulatives or a sketch; and record the problem with a number sentence.
> Create and illustrate, with counters, a story problem for a given number sentence; e.g., $6 \div 3=2$.
> Represent a given division expression as repeated subtraction.
$>$ Represent a given repeated subtraction as a division expression.
$>$ Relate division to multiplication by using arrays and writing related number sentences.
$>$ Solve a given problem involving division.
> Demonstrate understanding and recall/memorization of division facts related to multiplication facts to 5×5.

13. Demonstrate an understanding of fractions by:

- explaining that a fraction represents a part of a whole
- describing situations in which fractions are used
- comparing fractions of the same whole that have like denominators.
[C, CN, ME, R, V]
$>$ Identify common characteristics of a given set of fractions.
> Describe everyday situations where fractions are used.
> Cut or fold a whole into equal parts, or draw a whole in equal parts; demonstrate that the parts are equal; and name the parts.
> Sort a given set of shaded regions into those that represent equal parts and those that do not, and explain the sorting.
> Represent a given fraction concretely or pictorially.
> Name and record the fraction represented by the shaded and non-shaded parts of a given region.
$>$ Compare given fractions with the same denominator, using models.
> Identify the numerator and denominator for a given fraction.
$>$ Model and explain the meaning of numerator and denominator.

Strand: Patterns and Relations (Patterns) General Outcome: Use patterns to describe the	rld and to solve problems.
Specific Outcomes It is expected that students will:	Achievement Indicators The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
1. Demonstrate an understanding of increasing patterns by: - describing - extending - comparing - creating numerical (numbers to 1000) and non-numerical patterns using manipulatives, diagrams, sounds and actions. [C, CN, PS, R, V]	$>$ Describe a given increasing pattern by stating a pattern rule that includes the starting point and a description of how the pattern continues; e.g., for $42,44,46 \ldots$ the pattern rule is start at 42 and add 2 each time. > Identify the pattern rule of a given increasing pattern, and extend the pattern for the next three terms. > Identify and explain errors in a given increasing pattern. > Locate and describe various increasing patterns found on a hundred chart, such as horizontal, vertical and diagonal patterns. > Compare numeric patterns of counting by $2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}, 25 \mathrm{~s}$ and 100 s . > Create a concrete, pictorial or symbolic representation of an increasing pattern for a given pattern rule. - Create a concrete, pictorial or symbolic increasing pattern; and describe the relationship, using a pattern rule. > Solve a given problem, using increasing patterns. > Identify and describe increasing patterns in the environment. $>$ Identify and apply a pattern rule to determine missing elements for a given pattern. > Describe the strategy used to determine missing elements in a given increasing pattern.

2. Demonstrate an understanding of decreasing patterns by: - describing - extending - comparing - creating numerical (numbers to 1000) and non-numerical patterns using manipulatives, diagrams, sounds and actions. [C, CN, PS, R, V]	Describe a given decreasing pattern by stating a pattern rule that includes the starting point and a description of how the pattern continues. Identify the pattern rule of a given decreasing pattern, and extend the pattern for the next three terms. Identify and explain errors in a given decreasing pattern. Identify and describe various decreasing patterns found on a hundred chart, such as horizontal, vertical and diagonal patterns. Compare decreasing numeric patterns of counting backward by $2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}, 25 \mathrm{~s}$ and 100 s . Create a concrete, pictorial or symbolic decreasing pattern for a given pattern rule. Create a concrete, pictorial or symbolic decreasing pattern; and describe the relationship, using a pattern rule. Solve a given problem, using decreasing patterns. Identify and describe decreasing patterns in the environment. Identify and apply a pattern rule to determine missing elements for a given pattern. Describe the strategy used to determine missing elements in a given decreasing pattern.
3. Sort objects or numbers, using one or more than one attribute. [C, CN, R, V]	Classify a given set of numbers according to the number of digits. Classify a given set of numbers as odd or even. Classify a given set of numbers as fractions or whole numbers. Determine the difference between two given pre-sorted sets of objects that have been sorted based on two attributes, and explain a possible sorting rule used to sort them. Record the sorting of a set of objects, using tools such as Venn diagrams. Sort a given set of objects or numbers in more than one way, and explain how the sorting rules are different.

4. Solve one-step addition and subtraction equations involving a symbol to represent an unknown number. [C, CN, PS, R, V]
$>$ Explain the purpose of the symbol in a given addition or subtraction equation with one unknown; e.g., in the equation $3+\boldsymbol{\Delta}=10$, the triangle represents the number that would make the equation true.
> Create an addition or subtraction equation with one unknown to represent a given combining or separating action.
> Provide an alternative symbol for the unknown in a given addition or subtraction equation.
> Solve, using manipulatives, a given addition or subtraction equation with one unknown that represents combining or separating actions.
> Solve a given addition or subtraction equation with one unknown, using a variety of strategies, including guess and test.
> Solve a given addition or subtraction equation when the unknown is on the left or the right side of the equation.
> Explain why the unknown in a given addition or subtraction equation has only one value.

Strand: Shape and Space (Measurement)

General Outcome: Use direct and indirect measurement to solve problems.

Specific Outcomes
 Achievement Indicators

It is expected that students will:

1. Relate the passage of time to common activities,
using nonstandard and standard units (minutes,
hours, days, weeks, months, years).
[CN, ME, R]

The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
$>$ Select and use a nonstandard unit of measure, such as television shows or pendulum swings, to measure the passage of time, and explain the choice.
> Identify activities that can or cannot be accomplished in minutes, hours, days, weeks, months and years.
$>$ Provide personal referents for minutes and hours.
2. Relate the number of seconds to a minute, the number of minutes to an hour and the number of days to a month in a problem-solving context.
[C, CN, PS, R, V]
$>$ Determine the number of days in any given month, using a calendar.
$>$ Solve a given problem involving the number of seconds in a minute, minutes in an hour or days in a given month.
> Create a calendar that includes days of the week, dates and personal events.
3. Demonstrate an understanding of measuring length (cm, m) by:

- selecting and justifying referents for the units cm and m
- modelling and describing the relationship between the units cm and m
- estimating length, using referents
- measuring and recording length, width and height.
[C, CN, ME, PS, R, V]
> Provide a personal referent for one centimetre, and explain the choice.
> Provide a personal referent for one metre, and explain the choice.
> Match a given standard unit to a given referent.
$>$ Show that 100 cm is equivalent to 1 m by using concrete materials.
$>$ Estimate the length of an object, using personal referents.
$>$ Determine and record the length and width of a given 2-D shape.
$>$ Determine and record the length, width or height of a given 3-D object.
> Draw a line segment of a given length, using a ruler.
> Sketch a line segment of a given length without using a ruler.
> Provide a personal referent for one gram, and explain the choice.
> Provide a personal referent for one kilogram, and explain the choice.
$>$ Match a given standard unit to a given referent.
$>$ Explain the relationship between 1000 g and 1 kg , using a model.
> Estimate the mass of a given object, using personal referents.
> Determine and record the mass of a given 3-D object.
> Measure, using a scale, and record, using the units g and kg , the mass of given everyday objects.
> Provide examples of 3-D objects that have a mass of approximately $1 \mathrm{~g}, 100 \mathrm{~g}$ and 1 kg .
$>$ Determine the mass of two given similar objects with different masses, and explain the results.
$>$ Determine the mass of an object, change its shape, re-measure its mass, and explain the results.

```
5. Demonstrate an understanding of perimeter of
regular and irregular shapes by:
- estimating perimeter, using referents for }\textrm{cm}\mathrm{ or m
- measuring and recording perimeter
    (cm, m)
- constructing different shapes for a given
    perimeter (cm,m) to demonstrate that many
    shapes are possible for a perimeter.
[C, ME, PS, R, V]
```

> Measure and record the perimeter of a given regular shape, and explain the strategy used.
> Measure and record the perimeter of a given irregular shape, and explain the strategy used.
$>$ Construct a shape for a given perimeter (cm, m).
$>$ Construct or draw more than one shape for a given perimeter.
> Estimate the perimeter of a given shape (cm, m), using personal referents.

Strand: Shape and Space (3-D Objects and 2-D Shapes)

General Outcome: Describe the characteristics of 3-D objects and 2-D shapes, and analyze the relationships among them.

Specific Outcomes

It is expected that students will:
6. Describe 3-D objects according to the shape of the faces and the number of edges and vertices.
[C, CN, PS, R, V]

- triangles
- quadrilaterals
- pentagons
- hexagons
- octagons
according to the number of sides
[C, CN, R, V]

Achievement Indicators

The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
> Identify the faces, edges and vertices of given 3-D objects, including cubes, spheres, cones, cylinders, pyramids and prisms.
$>$ Identify the shape of the faces of a given 3-D object.
> Determine the number of faces, edges and vertices of a given 3-D object.
> Construct a skeleton of a given 3-D object, and describe how the skeleton relates to the 3-D object.
$>$ Sort a given set of 3-D objects according to the number of faces, edges or vertices.
> Classify a given set of regular and irregular polygons according to the number of sides.
> Identify given regular and irregular polygons that have different dimensions.
$>$ Identify given regular and irregular polygons that have different orientations.

Strand: Statistics and Probability (Data Analysis) General Outcome: Collect, display and analyze data to solve problems.	
Specific Outcomes It is expected that students will:	Achievement Indicators The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
1. Collect first-hand data and organize it using: - tally marks - line plots - charts - lists to answer questions. [C, CN, PS, V] [ICT: C4-1.3]	> Record the number of objects in a given set, using tally marks. > Determine the common attributes of line plots by comparing line plots in a given set. > Organize a given set of data, using tally marks, line plots, charts or lists. > Collect and organize data, using tally marks, line plots, charts and lists. > Answer questions arising from a given line plot, chart or list. > Answer questions using collected data.
2. Construct, label and interpret bar graphs to solve problems. [C, PS, R, V] [ICT: C4-1.3, C7-1.3, C7-1.4]	Determine the common attributes, titles and axes of bar graphs by comparing bar graphs in a given set. > Create a bar graph, labelling the title and axes, to represent a given set of data. > Draw conclusions from a given bar graph to solve problems. > Solve problems by constructing and interpreting a bar graph.

